Меню Закрыть

Выбираем инструмент для разметки текста (и не только!)

Рано или поздно перед любой компанией которая хочет внедрить системы машинного обучения в свою инфрастуктуру встает вопрос разметки данных. Чистые данные в достаточно большом количестве — залог хорошей модели, все мы прекрасно знаем правило «Garbage in — garbage out». Такой вопрос недавно встал и передо мной. В этом посте я поделюсь своим опытом поиска инструментов для разметки текста и звука под in-house разметчиков, постараюсь описать их плюсы и минусы, а в конце расскажу на чем мы в итоге остановились и что из этого вышло. Задачи на данном этапе относительно стандартные для NLP: классификация, NER, потенциально также может понадобиться entity-linking и разметка аудио под задачи ASR, но это пока менее приоритетно. Инструмент в идеале нужен open-source, но если будет приемлимый ценник за какие-то нужные фичи — мы готовы заплатить.

Заранее скажу, что этот пост никем не спонсировался, а все написанное ниже является сугубым ИМХО. Также имейте ввиду, что впечатления об использовании различных инструментов были составлены на момент написания статьи — осень-зима 2021-го года. Если вы смотрите на эти инструменты сильно позднее — возможно, информация будет уже не актуальной. Ну а теперь, поехали!

Читать далее

Читать дальше