Меню Закрыть

[Перевод] Как мы масштабируем машинное обучение

Введение

Наша компания еженедельно размечает порядка 10 миллиардов аннотаций. Чтобы обеспечивать высокое качество аннотаций для такого огромного объёма данных, мы разработали множество методик, в том числе sensor fusion для выявления подробностей о сложных окружениях, активный инструментарий для ускорения процесса разметки и автоматизированные бенчмарки для измерения и поддержания качества работы разметчиков. С расширением количества заказчиков, разметчиков и объёмов данных мы продолжаем совершенствовать эти методики, чтобы повышать качество, эффективность и масштабируемость разметки.

Как мы используем ML

Обширные объёмы передаваемых компании данных предоставляют ей бесценные возможности обучения и надстройки наших процессов аннотирования, и в то же время позволяют нашей команде разработчиков машинного обучения обучать модели, расширяющие набор доступных нам функций.
Читать дальше →

Читать дальше